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1. SYMMETRIES OF POLYNOMIALS

Let Sn be the group of permutations of 1, 2, . . . , n. For two permutations σ and τ , we will write either σ ◦ τ
or στ for the composition: (στ)(j) := σ(τ(j)). We will often write permutations using cycle notation:
(i1i2 · · · ik) means the permutation which cycles i1 7→ i2 7→ · · · 7→ ik 7→ i1 and fixes everything not in
{i1, i2, . . . , ik}. We will let Sn act on the ring of polynomials C[r1, . . . , rn] in the obvious way.

Set
∆ =

∏
i<j

(ri − rj).

Problem 1.1. (1) For any permutation σ in Sn, show that σ(∆2) = ∆2.
(2) For any permutation σ in Sn, show that σ(∆) = ±∆.

Let ω = −1+
√
−3

2 . When we studied the cubic formula, we set

P = r1 + ωr2 + ω2r3.

Let A3 be the subgroup {e, (123), (123)2} of S3.

Problem 1.2. (1) For any permutation σ ∈ A3, show that σ(P 3) = P 3.
(2) For any permutation σ ∈ A3, show that σ(P ) = ωkP for some integer k.

We set ε(σ) = σ(∆)
∆ , so ε(σ) ∈ {±1}. For σ ∈ A3, we set η(σ) = σ(P )

P , so η(σ) ∈ {1, ω, ω2}.

Problem 1.3. Show that ε(στ) = ε(σ)ε(τ), for σ and τ ∈ Sn. Show that η(στ) = η(σ)η(τ), for σ and
τ ∈ A3.

We generalize these two examples. Let f be a nonzero polynomial in C[r1, r2, . . . , rn] and let m be a
positive integer. Define

G = {σ ∈ Sn : σ(fm) = fm} H = {σ ∈ Sn : σ(f) = f}.

Problem 1.4. (1) For σ ∈ G, define χf (σ) = σ(f)
f . Show that χf (σ) is an m-th root of unity in C∗.

(2) Show that G and H are subgroups of Sn.
(3) Show that, for σ and τ ∈ G, we have χf (στ) = χf (σ)χf (τ).

Here are polynomials related to the quartic formula:

f fm

T = r1 + r2 − r3 − r4 T 2

U = r1 − r2 + r3 − r4 U2

V = r1 − r2 − r3 + r4 V 2

T + ωU + ω2V
(
T + ωU + ω2V

)3
Problem 1.5. For each of the polynomials in the table above, describe G, H and χf .



2. CHARACTERS OF THE SYMMETRIC AND ALTERNATING GROUPS

We recall the map ε : Sn → {±1}, defined by ε(σ) =
σ(

∏
(ri−rj))∏

(ri−rj) . You showed that ε(στ) = ε(σ)ε(τ).
This means that ε is an example of a character:

Let G be a group. A character of G is a map χ : G → C∗ obeying χ(gh) = χ(g)χ(h). The kernel of χ is
{g ∈ G : χ(g) = 1}. We define the alternating group, An, to be the kernel of ε.

Problem 2.1. Which of the following permutations are in A4:

Id, (12), (123), (12)(34), (1234)?

Two elements, g and h of G, are called conjugate, if there is an element c ∈ G with h = cgc−1.

Problem 2.2. Let g and h be conjugate and let χ : G→ C∗ be a character. Show that χ(g) = χ(h).

A transposition is a permutation of the type (ij). A 3-cycle is a permutation of the type (ijk).

Problem 2.3. Let (ij) and (k`) be two transpositions in Sn. Show that (ij) and (k`) are conjugate.

Problem 2.4. Let n ≥ 5 and let (ijk) be a 3-cycle in An. Show that (ijk) and (ijk)−1 are conjugate in An,
meaning that there is a permutation c ∈ An with c(ijk)c−1 = (ijk)−1.

Problem 2.5. (1) Show that any permutation in Sn is a product of transpositions.
(2) Show that any permutation in An is a product of 3-cycles.

Problem 2.6. Let χ : Sn → C∗ be a character.

(1) Show that either χ((ij)) = 1 for all transpositions (ij) ∈ Sn or else χ((ij)) = −1 for all transpo-
sitions (ij) ∈ Sn.

(2) Show that either χ(g) = 1 for all permutations g ∈ Sn or else χ(g) = ε(g) for all permutations
g ∈ Sn.

Problem 2.7. Let χ : An → C∗ be a character.

(1) Show that, for every 3-cycle (ijk), we have χ((ijk)) ∈ {1, ω, ω2}.
(2) Assuming that n ≥ 5, show that, for all 3-cycles (ijk), we have χ((ijk)) = 1.
(3) Assuming that n ≥ 5, show that, for all g ∈ An, we have χ(g) = 1.



3. A WEAK VERSION OF UNSOLVABILITY OF THE QUINTIC

One of the highlights of this course will be the proof of the unsolvability of the quintic. This worksheet
proves a weaker version of this result.

Let L be the field of rational functions C(r1, r2, . . . , rn). Define e1, e2, . . . , en as the coefficients of the
polynomial:

(x− r1)(x− r2) · · · (x− rn) = xn − e1x
n−1 + e2x

n−2 − e3x
n−3 + · · · ± en.

Theorem (Ruffini): Starting from e1, e2, . . . , en, it is impossible to obtain the elements r1, r2, . . . , rn
of L by the operations +, −, ×, ÷, n

√ , under the condition that, every time we take an n-th root, we
must stay in L.

At any point in the computation, there will be some list of elements of L which we have computed so far.
Call them θ1, θ2, θ3, . . . where each θk is either

(1) An element of C(e1, . . . , en).
(2) Of the form θi + θj , θi − θj , θi × θj or θi/θj , for i, j < k.
(3) Of the form n

√
θj for j < k.

Let Gj be the subgroup of Sn fixing θ1, θ2, . . . , θj .

Problem 3.1. (1) If θk ∈ C(e1, . . . , en), show that Gk = Gk−1.
(2) If θk is of the form θi + θj , θi − θj , θi × θj or θi/θj , for i, j < k, show that Gk = Gk−1.
(3) If θk is of the form n

√
θj for j < k, show that there is a character χ : Gk−1 → C∗ with kernel Gk.

Deleting the duplicate groups, we obtain a chain of subgroups

Sn = G0 ) G1 ) G2 ) · · ·
such that, for each k ≥ 1, there is a character χ : Gk−1 → C∗ with kernel Gk.

Problem 3.2. Let n ≥ 2. Show that the first step of the chain must be Sn ) An.

Problem 3.3. Let n ≥ 5. Show that the chain ends at An.

Problem 3.4. Prove Ruffini’s Theorem!



4. GROUPS

Definition: A group G is a set with a binary operation ∗ : G×G→ G obeying the properties

(1) There is an element 1 of G such that 1 ∗ g = g ∗ 1 = g for all g ∈ G.
(2) For all g ∈ G, there is an element g−1 obeying g ∗ g−1 = g−1 ∗ g = 1.
(3) For all g1, g2, g3 ∈ G, we have (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

Given a group G, a subgroup of G is a subset containing 1 and closed under ∗ and g 7→ g−1.

Depending on context, we may denote ∗ by ∗, ×, · or no symbol at all, and we may denote 1 as 1, e or Id.

Problem 4.1. Show that a group G only has one element 1 obeying the condition (1).

Problem 4.2. Let G be a group and let g ∈ G. Show that G only has one element obeying the condition (2).

Definition: Given two groups G and H , a group homomorphism is a map φ : G → H obeying
φ(g1 ∗g2) = φ(g1)∗φ(g2). A bijective group homomorphism is called an isomorphism and two groups
are called isomorphic if there is an isomorphism between them.

A group homomorphism can also be called a “map of groups” or a “group map”.

Problem 4.3. Let φ : G→ H be a group homomorphism. Show that φ(1) = 1 and φ(g−1) = φ(g)−1.

Problem 4.4. Let φ : G→ H be a group homomorphism.

(1) The image of φ is Im(φ) := {φ(g) : g ∈ G}. Show that Im(φ) is a subgroup of G.
(2) The kernel of φ is Ker(φ) := {g ∈ G : φ(g) = 1}. Show that Ker(φ) is a subgroup of G.

Definition: Given two groupsG andH , the product group is the group whose underlying set isG×H ,
with multiplication structure (g1, h1) ∗ (g2, h2) = (g1g2, h1h2).

Problem 4.5. LetG andH be two groups and let π1 and π2 be the projectionsG×H → G andG×H → H
onto the first and second factor. Show that G×H obeys the universal property of products, meaning that,
for any group F with maps φ1 : F → G and φ2 : F → H , there is a unique map (φ1, φ2) : F → G ×H
such that the diagram below commutes:

F
(φ1,φ2)

##

φ1

!!

φ2

$$

G×H π1 //

π2
��

G

H

We close with a few more definitions:

Definition: For g ∈ G, the conjugacy class of g is the set Conj(g) := {hgh−1 : h ∈ G}.

Definition: A group G is called abelian if g1 ∗ g2 = g2 ∗ g1 for all g1, g2 ∈ G.

If G is abelian, we often denote ∗ by + and 1 by 0. We never use these notations for a non-abelian group.



5. GROUP ACTIONS

Definition: Let G be a group and let X be a set. An action of G on X is a map ∗ : G × X → X
obeying (g1 ∗ g2) ∗ x = g1 ∗ (g2 ∗ x) and e ∗ x = x.

Depending on context, we may denote ∗ by ∗, ×, · or no symbol at all. This notion of an action can also be
called a “left action”; a “right action” is a map ∗ : X ×G→ X obeying x ∗ (g2 ∗ g1) = (x ∗ g2) ∗ g1.

Problem 5.1. Let G×X → X be a left action of G on X . Define a map X ×G→ X by (x, g) 7→ g−1x.
Show that this is a right action of G on X .

Problem 5.2. Let SX be the group of bijections X → X , with the group operation of composition. Show
that an action of G on X is the same as a group homomorphism G→ SX .

Definition: Let G be a group which acts on a set X . For x ∈ X , the stabilizer Stab(x) of x is
{g ∈ G : g ∗ x = x}. For g ∈ G, the fixed points Fix(g) of g are {x ∈ X : g ∗ x = x}.

Problem 5.3. With G, X and x as above, show that Stab(x) is a subgroup of X .

Problem 5.4. Let G, X and x be as above and let g ∈ G. Show that Stab(gx) = g Stab(x)g−1.

Definition: For G, X and x as above, the orbit of x, written Gx, is {gx : g ∈ G}.

Problem 5.5. (The Orbit-Stabilizer theorem) If G is finite, show that #(G) = #(Gx)#(Stab(x)).

The set of orbits of G on X is denoted G\X . If we have a right action, we write X/G.

Problem 5.6. (Burnside’s Lemma1) Let G be a finite group and let X be a finite set on G acts. Show that
1

#G

∑
g∈G

#Fix(g) = #(G\X).

Definition: Let G be a group and let H be a subgroup. Let H act on G by h ∗ g = hg. The orbits
of this action are called the right cosets of H in G. The left cosets are the orbits for the right action
G ∗H → G. The number of cosets of H in G is called the index of H in G and written [G : H].

Problem 5.7. Show thatG has a left action on the setG/H of left cosets, such that g1∗(g2H) = (g1∗g2)H .
Show that the stabilizer of the coset eH is H .

Problem 5.8. (Lagrange’s Theorem2) Let G be a finite group and let H be a subgroup. Show that #(H)
divides #(G).

Problem 5.9. Let G be a finite group with #(G) = N . Let g ∈ G and let the group generated by g have n
elements.

(1) Show that n divides N .
(2) Show that gN = 1.

1Proved by Ferdinand Georg Frobenius.
2Proved by Camille Jordan.



6. NORMAL SUBGROUPS, QUOTIENT GROUPS, SHORT EXACT SEQUENCES

Problem 6.1. Let G be a group and let N be a subgroup. Show that the following are equivalent:

(1) For all g ∈ G, we have gNg−1 = N .
(2) N is a union of (some of the) conjugacy classes of G.
(3) All elements of G/N have the same stabilizer, for the left action of G on G/N .
(4) Every left coset of N in G is also a right coset.
(5) If g1N = g′1N and g2N = g′2N , then g1g2N = g′1g

′
2N .

Definition: A subgroup N obeying the equivalent conditions of Problem 6.1 is called a normal sub-
group of G. We write N E G to indicate that N is a normal subgroup of G.

Problem 6.2. Let G be S3. Which of the following subgroups are normal?

(1) The subgroup generated by (12).
(2) The subgroup generated by (123).

Problem 6.3. Let G be a group and let N be a normal subgroup of G.

(1) Prove or disprove: Let α : F → G be a group homomorphism. Then α−1(N) is normal in F .
(2) Prove of disprove: Let β : G→ H be a group homomorphism. Then β(N) is normal in H .
(3) At least one of the statements above is false. Find an additional hypothesis you could add to make

it true.

Definition: Given a group G and a normal subgroup N , the quotient group G/N is the group whose
underlying set is the set of cosets G/N with multiplication such that (g1N)(g2N) = g1g2N .

This definition makes sense by Part (4) of Problem 6.1. I won’t make you check that this is a group, but do
so on your own time if you have any doubt. Also, I won’t make you check this, but the groups G/N and
N\G, defined in the obvious ways, are isomorphic.

Let φ : G→ H be a group homomorphism. Recall that the image and kernel of φ are Ker(φ) := {g ∈ G :
φ(g) = 1} and Im(φ) := {φ(g) : g ∈ G}.
Problem 6.4. Show that the kernel of φ is a normal subgroup of G.

Problem 6.5. Show that the “obvious” map from G/Ker(φ) to Im(φ) is an isomorphism.

We often discuss quotients using the language of short exact sequences:

Definition: A short exact sequence 1 → A
α−→ B

β−→ C → 1 is three groups A, B and C, and
two group homomorphisms α : A → B and β : B → C such that α is injective, β is surjective, and
Im(α) = Ker(β).

I will occasionally write 0 instead of 1 at one end or the other of a short exact sequence. I do this when the
adjacent group (meaning A or C) is abelian and it would feel bizarre to denote the identity of that abelian
group as 1.

We’ll write Cn for the abelian group Z/nZ. This is called the cyclic group of order n.

Problem 6.6. Show that there is a short exact sequence 1→ Cm → Cmn → Cn → 1.

Problem 6.7. Show that there is a short exact sequence 1→ C3 → S3 → S2 → 1.

Problem 6.8. Show that there is a short exact sequence 1→ C2
2 → S4 → S3 → 1.



7. SIMPLE GROUPS

Definition: A group G is called simple if G has precisely two normal subgroups, G and {1}.

We remark that the trivial group is not simple, since it only has one normal subgroup.

Problem 7.1. Prove or disprove: Let G be simple and let H be any group. For every group homomorphism
φ : G→ H , either φ is injective or else φ is trivial.

Problem 7.2. Prove or disprove: Let G be any group and let H be simple. For any group homomorphism
φ : G→ H , either φ is surjective or else φ is trivial.

Problem 7.3. Let p be a prime. Show that Cp (the cyclic group of order p) is simple.

Problem 7.4. In this problem we will show that An is simple, for n ≥ 5. Let N be a nontrivial normal
subgroup of An. Let g be a non-trivial element of N .

(1) Show that there is some 3-cycle (ijk) in An which does not commute with g.

We set h = g(ijk)g−1(ijk)−1.

(2) Show that h ∈ N .
(3) Show that h has one of the following cycle structures: (abc)(def), (abcde), (ab)(cd), (abc).
(4) Show that N contains a 3-cycle. In the case where h has cycle type (ab)(cd), you’ll need to use that

n ≥ 5. This part is a nuisance, and you may want to skip ahead and come back to it.
(5) Show that N = An.

After Cp andAn, the most important simple groups are the projective special linear groups. Let F be a field.
The group SLn(F ) is the group of n× n matrices with entries in F and determinant 1. Let Z ⊂ SLn(F ) be
{ζ Idn : ζ ∈ F with ζn = 1}. The projective special linear group PSLn(F ) is defined to be SLn(F )/Z.
The group PSLn(F ) is simple, except in the cases of PSL2(F2) (which is isomorphic to S3) and PSL2(F3)
(which is isomorphic to A4). The proof that PSLn(F ) has a lot of good ideas in it, but it is too long to make
a worksheet problem; it might appear as a bonus lecture.



8. SUBNORMAL SERIES, COMPOSITION SERIES

Definition: A subnormal series of a group G is a chain of subgroupsG0 /G1 /G2 /G3 / · · ·/GN ⊆ G
where Gj−1 is normal in Gj . A composition series is a subnormal series where G0 = {e}, GN = G
and each subquotient Gj/Gj−1 is simple. A quasi-composition series is a composition series where
G0 = {e}, GN = G and each subquotient is either simple or trivial.

Problem 8.1. Show that a group which has a quasi-composition series has a composition series.

Problem 8.2. Show that every finite group has a composition series.

Problem 8.3. Show that S4 has a composition series with subquotients C2, C2, C3 and C2.

Problem 8.4. Show that GL2(F7) has a composition series with subquotients C2, PSL2(F7), C2 and
C3. You may assume that PSL2(F7) is simple. (For a field of characteristic 6= 2, the group PSL2(F )
is SL2(F )/± Id. See the worksheet on simple groups for the definition of PSLn(F ) in general.)

Problem 8.5. Let 1 → A
α−→ B

β−→ C → 1 be a short exact sequence, and let {1} = A0 ⊂ A1 ⊂ · · · ⊂
Aa = A and {1} = C0 ⊂ C1 ⊂ · · · ⊂ Cc = C be composition series of A and C. Show that

{1} = α(A0) ⊂ α(A1) ⊂ · · · ⊂ α(Aa) = β−1(C0) ⊂ β−1(C1) ⊂ · · · ⊂ β−1(Cc) = B

is a composition series for B.

Problem 8.6. Let 1 → A
α−→ B

β−→ C → 1 be a short exact sequence and let {1} = B0 ⊂ B1 ⊂ · · · ⊂
Bb = B be a composition series of B.

(1) Show that {1} = α−1(B0) ⊆ α−1(B1) ⊆ · · · ⊆ α−1(Bb) = A is a quasi-composition series for A.
(2) Show that {1} = β(B0) ⊆ β(B1) ⊆ · · · ⊆ β(Bb) = C is a quasi-composition series for C.

We are setting up to prove the Jordan-Holder theorem for groups. Here is a useful lemma.

Problem 8.7. Let 1→ A
α−→ B

β−→ C → 1 be a short exact sequence and let B′ be a normal subgroup of
B. Set A′ = α−1(B) and C ′ = β(B). You might find it useful to think of A as a subgroup of B, and A′ as
A ∩B′.

(1) Show that 1→ A′ → B′ → C ′ → 1 is a short exact sequence.
(2) Show that 1→ A/A′ → B/B′ → C/C ′ → 1 is a short exact sequence.



9. THE JORDAN-HOLDER THEOREM

We recall the definitions from last time:

Definition: A subnormal series of a group G is a chain of subgroupsG0 /G1 /G2 /G3 / · · ·/GN ⊆ G
where Gj−1 is normal in Gj . A composition series is a subnormal series where G0 = {e}, GN = G
and each subquotient Gj/Gj−1 is simple. A quasi-composition series is a composition series where
G0 = {e}, GN = G and each subquotient is either simple or trivial.

Let G be a group with a composition series {e} = G0 .G1 . · · ·.GN = G. We define N to be the length of
the composition series and write N = `(G). For a simple group Γ and a composition series G•, we define
m(G•,Γ) to be the number of quotients Gj/Gj−1 which are isomorphic to Γ. Our aim today is to prove

Theorem (Jordan-Holder): Let G be a group and let G• and G′• be two composition series for G.
Then `(G•) = `(G′•) and, for any simple group Γ, we have m(G•,Γ) = m(G′•,Γ).

Let 1→ A
α−→ B → β−→ C → 1 be a short exact sequence of groups. LetB• be a composition series forB.

Recall that we proved on the previous worksheet that {1} = α−1(B0) ⊆ α−1(B1) ⊆ · · · ⊆ α−1(Bb) = A
is a quasi-composition series for A and {1} = β(B0) ⊆ β(B1) ⊆ · · · ⊆ β(Bb) = C is a quasi-composition
series for C.

Problem 9.1. With the above notations, let A• and C• be the composition series obtained from deleting
duplicate entries from the quasi-composition series above.

(1) Show that `(B•) = `(A•) + `(C•).
(2) For any simple group Γ, show that m(B•,Γ) = m(A•,Γ) +m(C•,Γ).

At this point, you have enough to prove the Jordan-Holder theorem for finite groups, by induction on #(G).

Problem 9.2. Check the base case: Jordan-Holder holds for the trivial group.

Problem 9.3. Check also that Jordan-Holder holds for simple groups.

Problem 9.4. Suppose that G is a finite group which is neither simple nor trivial, and suppose that Jordan-
Holder holds for all groups of size less than #(G). Show that Jordan-Holder holds for G. This completes
the induction, for #(G) <∞.

The Jordan-Holder theorem is also true for infinite groups that have composition series! Proving this requires
no big new ideas, but a little more finesse. Define L(G) = min `(G•), where the minimum is over all
composition series for G. Note L(G) = 0 if and only if G is trivial, and L(G) > 0 for any nontrivial G.

Problem 9.5. Check that L(G) = 1 if and only if G is simple.

Problem 9.6. Let 1→ A→ B → C → 1 be a short exact sequence of groups.

(1) Show that L(B) ≥ L(A) + L(C).1

(2) If A and C are nontrivial, show that L(B) > L(A) and L(B) > L(C).

Problem 9.7. Prove the Jordan-Holder theorem by induction on L(G).

1In fact, equality holds and you have the tools to show it, but you don’t need this.



10. SOLVABLE GROUPS

Now that we have the Jordan-Holder theorem, we can start to classify groups according to what kind of
factors appear in their composition/subnormal series. A basic example of this is the solvable groups:

Definition: A group G is called solvable if it has a subnormal series 1 = G0 E G1 E G2 E · · · E
GN = G such that Gj/Gj−1 is abelian.

Problem 10.1. Show that S3 and S4 are solvable.

Problem 10.2. Show that a subgroup of a solvable group is solvable.

Problem 10.3. Show that a quotient group of a solvable group is solvable.

Problem 10.4. Show that, if 1 → A
α−→ B

β−→ C → 1 is a short exact sequence, and A and C are
solvable, then B is solvable.

Problem 10.5. Show that a finite group is solvable if and only if all its Jordan-Holder factors are cyclic of
prime order.

There is a standard algorithm to test whether a group is solvable, using the derived series.

Definition: Let G be a group. The commutator subgroup, also called the derived subgroup, is the
group generated by all products ghg−1h−1 for g and h ∈ G. It can be denoted D(G) or [G,G].

Problem 10.6. Show that D(G) is normal in G.

Problem 10.7. Show that G/D(G) is abelian.

Definition: The quotient G/D(G) is called the abelianization of G and denoted Gab.

Problem 10.8. Prove the universal property of the abelianization: If G is a group, A is an abelian group
and χ : G → A is a group homomorphism, then there is a unique homomorphism φ : Gab → A such that
the diagram below commutes:

G
χ

!!
����

Gab

φ
// A

.

Definition: The derived series of G is the chain of subgroups G D D(G) D D(D(G)) D · · · . We’ll
denote the k-th group in this chain as Dk(G).

Problem 10.9. Show that G is solvable if and only if there is some N for which DN (G) = {e}.

Problem 10.10. (1) For n ≥ 2, show that Sab
n
∼= {±1}.

(2) For n ≥ 5, show that Aab
n is trivial.

(3) For n ≥ 5, show that Sn is not solvable.



11. DIRECT PRODUCTS

Before starting our main topic, we want some lemmas about the following definition:

Definition: Let B be a group and let A and C be subgroups. Then AC is the set {ac : a ∈ A, c ∈ C}.

Problem 11.1. Show that, if B is a group and A and C are subgroups with A ∩ C = {e}, then the map of
sets A× C → AC by (a, c) 7→ ac is a bijection.

Problem 11.2. Give an example of a group B and two subgroups A and C such that AC is not a subgroup
of B. (Hint: There is an example in S3.)

In light of the Jordan-Holder theorem, it is natural to ask, given two groups A and C, how we can put them
together into a short exact sequence 1 → A → B → C → 1. The most basic way to do this is by a
direct product. As with modules and vector spaces, these come in both internal and external versions. I’ll
underline the internal products for this worksheet, but the usual notation is to use × for both of them.

Definition: Given two groups A and C, the direct product is the group whose underlying set is A×C,
with multiplication structure (a1, c1) ∗ (a2, c2) = (a1a2, c1c2).

Problem 11.3. Let B be a group which has two normal subgroups A and C, such that A ∩ C = {e} and
such that B = AC.

(1) Show that, for any a ∈ A and c ∈ C, we have ac = ca. (Hint: Think about aca−1c−1.)
(2) Show that B is isomorphic to the direct product A× C.

We will write B = A×C in this case when A and C are as above. This is an “internal direct product”.

Problem 11.4. Show that GL3(R) = SL3(R)×R× Id3.

Problem 11.5. Let 1 → A
α−→ B

β−→ C → 1 be a short exact sequence and suppose that there is a group

homomorphism ρ : B → A with ρ ◦ α = Id. In this case, we will say that the sequence 1→ A
α−→ B

β−→
C → 1 is left split.

(1) Show that B = α(A)×Ker(ρ).
(2) Show that α(A) ∼= A and Ker(ρ) ∼= C, so B ∼= A× C.

Problem 11.6. For any groups A and C, show that there is a left split short exact sequence

1→ A→ A× C → C → 1.



12. SEMIDIRECT PRODUCTS

Once again, we ask how we can stick groups A and C together into a short exact sequence 1→ A→ B →
C → 1. After direct products, the next most basic way is semidirect products. This time, we’ll do the
internal version first. Again, I’ll underline the internal version for this worksheet, but the standard notation
is to use the same symbol for both. We recall the definition:

Definition: Let B be a group and let A and C be subgroups. Then AC is the set {ac : a ∈ A, c ∈ C}.

We proved last time that, if A ∩ C = {e}, then the map (a, c) 7→ ac is a bijection from A× C to AC.

Problem 12.1. Let B be a group, let A be a normal subgroup of B and let C be any subgroup of B. Show
that AC is a subgroup of B.

Definition: Let B be a group, let A be a normal subgroup of B and let C be any subgroup of B.
Suppose that A∩C = {e} and that B = AC. Then we say that B is the internal semidirect product of
A and C and write B = AoC.

Problem 12.2. Show that S3 = A3oS2, with S2 embedded as the permutations that fix 3.

Problem 12.3. Let B = AoC. Define a map φ : C → Aut(A) by φ(c)(a) = cac−1.

(1) Show that φ(c) is, as promised, an automorphism of A.
(2) Show that φ : C → Aut(A) is a group homomorphism.
(3) Show that

(a1c1)(a2c2) =
(
a1φ(c1)(a2)

)
(c1c2).

We use the formula in the last problem to define the external semidirect product:

Definition: Let A and C be groups and let φ : C → Aut(A) be a group homomorphism. We define
Aoφ C to be the group whose underlying set is A× C, with multiplication

(a1, c1)(a2, c2) = (a1φ(c1)(a2), c1c2).

We sometimes omit φ when it is clear from context.

Problem 12.4. Check that Aoφ C is a group.

So Problem 12.3 says that, if B = AoC, then B ∼= Aoφ C for the action φ(c)(a) = cac−1.

Problem 12.5. Give two actions of C2 on C3 such that S3
∼= C3 oC2 for one action and C6

∼= C3 oC2 for
the other.

Problem 12.6. Let p be prime. Show that Cp2 6∼= Cp o Cp for any action of Cp on Cp.

Problem 12.7. Let 1 → A
α−→ B

β−→ C → 1 be a short exact sequence and suppose that there is a group

homomorphism σ : C → B with β ◦ σ = Id. In this case, we will say that the sequence 1→ A
α−→ B

β−→
C → 1 is right split.

(1) Show that B = α(A)oσ(C).
(2) Show that α(A) ∼= A and σ(C) ∼= C, so B ∼= Ao C.

Problem 12.8. For any groups A and C, and any action of C on A, show that there is a right split short
exact sequence

1→ A→ Aoφ C → C → 1.



13. ABELIAN EXTENSIONS

Here is a lemma from the homework; check that everyone in your group solved it.

Problem 13.1. Let 1 → A
α−→ B

β−→ C → 1 be short exact. Let C̃ be any subset of G such that
β : C̃ → C is bijective. Then every b ∈ B can be uniquely written in the form α(a)c̃ for a ∈ A and c̃ ∈ C̃.

In this worksheet, we will study short exact sequences 1→ A→ G→ H → 1 with A abelian; when such a
short exact sequence exists, we say that G is an abelian extension of H . A special case is when A is central
in G, in this case, we say that G is a central extension of H .

Problem 13.2. Let 1 → A → G → H → 1 be an abelian extension. Since A is normal in G, we get an
action of G on A by g : a 7→ gag−1. Show that the map G→ Aut(A) factors through H .

We’ll write φ : H → Aut(A) for the resulting action.

Problem 13.3. Show that the action φ is trivial (meaning φ(h)(a) = a for all h ∈ H and a ∈ A) if and only
if the extension 1→ A→ G→ H → 1 is central.

Classifying abelian extensions with fixed (A,H) thus comes down to two parts (1) classifying all actions of
H on A and (2) for each action φ, classifying all abelian extensions that result. We know there is always at
least one such extension: the semidirect product Aoφ H .

Problem 13.4. Let p be a prime number, let H be a group of order pk and let 1 → Cp → G → H be an
abelian extension. Show that it must be a central extension.

Problem 13.5. Let n be a positive integer and let 1→ Z → G→ Cn → 1 be a central extension. Show that
G is abelian. (Hint: Let g ∈ G map to a generator of Cn. Use Problem 13.1 with S = {1, g, g2, . . . , gn−1}.)
Problem 13.6. Let p be a prime number and let G be a group of order pk. Show that G lies in a central
extension 1→ Cp → G→ H → 1 for some H of order pk−1.

Problem 13.7. Let p be prime. Show that every group of order p2 is isomorphic to C2
p or Cp2 .

Problem 13.8. Let p and q be distinct prime numbers, let A ∼= Cp, H ∼= Cq and let 1→ A→ G→ H → 1
be an abelian extension.

(1) If p 6≡ 1 mod q, show that the action of H on A is trivial.
(2) If the action of H on A is trivial, show that G ∼= Cpq ∼= Cp × Cq.
(3) If the action φ of H on A is nontrivial, show that G ∼= Cp oφ Cq.

Problem 13.9. Let p be an odd prime, let A ∼= Cp, H ∼= C2
p . In this problem, we will classify abelian

extensions 1→ A→ G→ H → 1. We write z for a generator of A and x̃ and ỹ for lifts of x and y to G.

(1) Show that z is central in G. (Hint: What can φ be?)
(2) Show that every element of G is uniquely of the form x̃aỹbzc for a, b, c ∈ {0, 1, . . . , p− 1}.
(3) Show that x̃p, ỹp and ỹx̃ỹ−1x̃−1 are of the form zi, zj and zk for some i, j and k ∈ Z/pZ.
(4) Suppose that k = 0. Show that G is abelian and is isomorphic to either C3

p or Cp2 × Cp.
(5) Suppose that k 6= 0 and (i, j) = (0, 0). Show that (x̃a1 ỹb1zc1)(x̃a2 ỹb2zc2) = x̃a1+a2 ỹb1+b2zc1+c2+kb1a2 .

Show that G is isomorphic to the group of matrices of the form
[

1 ∗ ∗
1 ∗

1

]
with entries in Z/pZ.

(6) Suppose that (i, j) 6= (0, 0). Show that there are a and b not both 0 mod p such that (x̃aỹb)p = 1.
This is where you will need that p is odd.

(7) Suppose that (i, j) 6= (0, 0) Show that G ∼= Cp2 oφ Cp and describe the action of Cp on Cp2 .

Problem 13.10. Let p be an odd prime. Show that every group of order p3 is isomorphic to one of

C3
p , Cp2 × Cp, Cp3 , Cp2 o Cp,

{[
1 a c
0 1 b
0 0 1

]
: a, b, c ∈ Z/pZ

}
.



14. THE SYLOW THEOREMS

Let p be a prime.

Definition: A p-group is a group P with #(P ) = pk for some k. For a group G, a p-subgroup of G is
a subgroup which is a p-group.

Problem 14.1. Let P be a p group and letX be a finite set on which P acts. Suppose that #(X) 6≡ 0 mod p.
Show that P fixes some point of X .

Let G be a group. Factor #(G) as pkm where p does not divide m.

Definition: A Sylow p-subgroup of G is a subgroup of G of order pk.

Problem 14.2. Let Γ be a finite group with a Sylow p-subgroup Π. Let G be a subgroup of Γ.

(1) Show that G has a Sylow p-subgroup P . Hint: Consider G acting on Γ/Π.
(2) Show, more specifically, that there is some γ ∈ Γ such that P = G ∩ γΠγ−1.

Hint for the following three problems: Use Problem 14.2.

Problem 14.3. (The first Sylow theorem) Show that every finite group G has a Sylow p-subgroup.

Problem 14.4. Let G be a finite group and let P be a Sylow p-subgroup with #(P ) = pk.

(1) Let Q be a p-subgroup of G. Show that there is some g ∈ G such that Q ⊆ gPg−1.
(2) Let H be a subgroup of G whose order is divisible by pk. Show that there is some g ∈ G such that

H ⊇ gPg−1.

Problem 14.5. (The second Sylow theorem) Let G be a finite group and let P1 and P2 be two Sylow
p-subgroup of G. Show that there is some g ∈ G such that P2 = gP1g

−1.

Let G be a group and let H be a subgroup of G. We define NG(H) = {g ∈ G : gHg−1 = H}. The group
NG(H) is called the normalizer of H in G.

Problem 14.6. Map G/NG(P ) to the set of Sylow p-subgroups by sending the coset gNG(P ) to gPg−1.
Show that this map is well defined, and is a bijection.

Problem 14.7. (1) Show that P is normal in NG(P ).
(2) Let Q be a p-subgroup of NG(P ). Show that Q ⊆ P .
(3) Let H be a p-subgroup of G. Show that H ∩NG(P ) = H ∩ P .

Problem 14.8. Since P is a subgroup of G, the group P acts on G/NG(P ). Show that the only coset which
is fixed for this action is eNG(P ).

Problem 14.9. (The third Sylow theorem) The number of Sylow p-subgroups of G is ≡ 1 mod p.



15. SOME PROBLEMS WITH SYLOW GROUPS

Problem 15.1. LetG be a group of order pkmwhere p does not dividem. Show that the number of p-Sylow
subgroups of G divides m.

Problem 15.2. Let G and H be finite groups and p a prime number. Let P and Q be p-Sylow subgroups of
G and H .

(1) Show that P ×Q is a p-Sylow subgroup of G×H .
(2) Show that every p-Sylow subgroup ofG×H is of the form P ′×Q′ for P ′ andQ′ p-Sylow subgroups

of G and H .

Problem 15.3. Let 1 → A
α−→ B

β−→ C → 1 be a short exact sequence of finite groups and let Q be a
p-Sylow subgroup of B. Show that α−1(Q) and β(Q) are p-Sylow subgroups of A and C respectively.

Problem 15.4. Let p < q be primes and let G be a group of order pq.

(1) Show that the q-Sylow subgroup of G is normal.
(2) Conclude that there is a short exact sequence 1→ Cq → G→ Cp → 1.
(3) Show that G ∼= Cq o Cp for some action of Cp on Cq.

Problem 15.5. Show that there are no simple groups of order 40. (Hint: Look at 5-Sylows.)

Problem 15.6. In this problem, we will show that there is no simple group G of order 80.

(1) Show that, if G were such a group, then G would have five 2-Sylow subgroups.
(2) Consider the map G→ S5 to get a contradiction.

Problem 15.7. A standard rite of passage is to check that there are no non-abelian simple groups of order
< 60, so let’s do that. Let G be a non-abelian simple group.

(1) Show that the order of G is not a prime power.
(2) Show that, for every prime p dividing #(G), there must be some np dividing #(G) with np > 1

and np ≡ 1 mod p.

At this point, we have ruled out all cases except 12, 24, 30, 36, 48 and 56.

(3) In the notation of the previous problem, show that furthermore we must have #(G)|np!
2 .

This rules out 12, 24, 48 (take p = 2) and 36 (take p = 3).

(4) Suppose that G were a simple group of order 30. Show that G would contain 24 elements of order
5 and 20 elements of order 3; deduce a contradiction.

(5) Suppose that G were a simple group of order 56. Show that G would contain 48 elements of order
7 and > 8 elements whose order is a power of 2; deduce a contradiction.



16. REVIEW OF POLYNOMIAL RINGS

Throughout this worksheet, let k be a field. Let k[x] be the ring of polynomials with coefficients in k.

Here are some things that you hopefully know, and may use without proof.

• Let b(x) ∈ k[x] be a nonzero polynomial of degree d. Let a(x) be any polynomial in k[x]. Show
that there are unique polynomials q(x) and r(x), with deg r < d, such that

a(x) = b(x)q(x) + r(x).

• The ring k[x] is Euclidean, is a PID and a UFD.
• If p(x) is an irreducible polynomial, then p(x)k[x] is a maximal ideal, and k[x]/p(x)k[x] is a field.

Problem 16.1. Let b(x) ∈ k[x] be a nonzero polynomial of degree d. Show that the ring k[x]/b(x)k[x] is a
k-vector space of dimension d.

Let K be a larger field containing k. For θ ∈ K, we say that θ is algebraic over k if there is a nonzero
polynomial f(t) in k[t] with f(θ) = 0.

Problem 16.2. Let θ ∈ K be algebraic over k. Let I ⊂ k[t] be {f(t) ∈ k[t] : f(θ) = 0}.

(1) Show that I = m(t)k[t] for some irreducible polynomial m.
(2) Show that k[θ], meaning the subring of K generated by k and θ, is isomorphic to k[t]/m(t)k[t].

The polynomial m(t) is called the minimal polynomial of θ.

Problem 16.3. Let K be a larger field containing k. Let α and β be two algebraic elements of K which
have the same minimal polynomial. Show that there is an isomorphism k[α]→ k[β] taking α to β.

Problem 16.4. Show that θ is algebraic over k if and only if dimk k[θ] <∞.

Problem 16.5. Show that the set of elements of K which are algebraic over k is a subfield of K.



17. DEGREES OF FIELD EXTENSIONS, AND CONSTRUCTIBLE NUMBERS

Definition: Let L be a field and K a subfield. The degree of L over K, written [L : K], is the dimension of
L as a K-vector space.

Problem 17.1. Let K ⊆ L ⊆ M be three fields with [L : K] and [M : L] < ∞. Show that [M : K] =
[M : L][L : K].

Problem 17.2. Let k ⊆ K be a field extension with [K : k] <∞. Let θ ∈ K and let m(x) be the minimal
polynomial of θ over k. Show that degm(x) divides [K : k].

We illustrate these results with an extremely classical application. A real number θ ∈ R is called con-
structible if it can be written in terms of rational numbers using the operations +, −, ×, ÷ and √ . Classi-
cally, these numbers were studied because the distance between any two points constructed with straightedge
and compass is constructible; now we can motivate them by saying they are the numbers which can be com-
puted exactly with a four function calculator.

Figure: Two ancient mathematical tools

Problem 17.3. Suppose we compute a sequence of real numbers θ1, θ2, θ3, . . . , θN where each θk is either

• a rational number,
• of one of the forms θi + θj , θi − θj , θiθj or θi/θj for some i, j < k or
• of the form

√
θj for some j < k.

Show that [Q[θ1, θ2, . . . , θN ] : Q] is a power of 2.

Problem 17.4. Let θ be a constructible real number and let m(x) be its minimal polynomial over Q. Show
that degm(x) is a power of 2.

Problem 17.5. (The impossibility of doubling the cube.) Show that 3
√

2 is not constructible.

Problem 17.6. (The impossibility of trisecting the angle) It is well known that a 60◦ angle is constructible
with straightedge and compass. Show, however, that cos 20◦ is not constructible. Hint:

4 cos3 20◦ − 3 cos 20◦ = cos 60◦ =
1

2
.



18. SPLITTING FIELDS AND MAPS BETWEEN THEM

Definition: Let k be a field, let f(x) be a polynomial in k[x] and let K be an extension field of f . We will
say that f splits in K if f factors as a product of linear polynomials in K[x]. We say that K is a splitting
field of f if f splits as a product c

∏
(x− θj) in K[x] and the field K is generated by k and by the θj .

For example, if k = Q and θ1, θ2, . . . , θn are the roots of f(x) in C, then Q[θ1, . . . , θn] is a splitting field of
f(x).

Problem 18.1. Let k be a field and let f(x) be a polynomial in k[x]. Show that f has a splitting field.

Problem 18.2. Let L be a splitting field for x3 − 2 over Q. Show that [L : Q] = 6. (Hint: At one point, it
will be very useful to use the fact that Q[ 3

√
2] is a subfield of R.)

Problem 18.3. Let L = C(x1, x2, . . . , xn). Let ek be the k-th elementary symmetric polynomial and let
K = C(e1, e2, . . . , en) ⊂ L. Show that L is a splitting field for xn − e1x

n−1 + e2x
n−2 − · · · ± en over K.

Problem 18.4. Let

f(x) =
(
x− cos 2π

7

) (
x− cos 4π

7

) (
x− cos 8π

7

)
= 1

8

(
8x3 + 4x2 − 4x− 1

)
.

I promise, and you may trust me, that f(x) is irreducible. Let K = Q(cos 2π
7 ).

(1) Show that [K : Q] = 3.
(2) Show that f(x) splits in K. Hint: Use the double angle formula.
(3) Show that there is an automorphism σ : K → K with σ(cos 2π

7 ) = cos 4π
7 .

Problem 18.5. Let k be a field and let f(x) be a polynomial in k[x]. Let K be a splitting field of f in which
f splits as

∏
(x − αj). Let σ : k → L be a field homomorphism and let σ(f) :=

∑
σ(fj)x

j split in L.
Show that there is an injection φ : K → L making the diagram

k

��

σ

&&
K

φ // L

commute. Hint: Think about k ⊆ k[α1] ⊆ k[α1, α2] ⊆ · · · ⊆ k[α1, α2, . . . , αn] = K.

Problem 18.6. Let k1 and k2 be two fields and let σ : k1 → k2 be an isomorphism. Let (x) =
∑
fjx

j be a
polynomial in k1[x] and let σ(f)(x) :=

∑
σ(fj)x

j . Let K1 be a splitting field of f and let K2 be a splitting
field of σ(f). Show that there is an isomorphism K1

∼= K2 making the diagram

k1

��

σ // k2

��
K1

∼= // K2

commute.

Problem 18.7. Let k be a field and let f(x) be a polynomial in k[x]. Let K1 and K2 be two splitting fields
of f . Show that there is an isomorphism K1

∼= K2 making the diagram

k

�� ''
K1

∼= // K2

commute. So splitting fields are unique.



19. INTRODUCTION TO FIELD AUTOMORPHISMS

Definition: Let K ⊆ L be fields. An automorphism of L is a bijection σ : L→ L with σ(x+ y) = σ(x) +
σ(y) and σ(xy) = σ(x)σ(y). An automorphism of L fixingK is an automorphism of L obeying σ(a) = a
for all a ∈ K. We write Aut(L) for the automorphisms of L and Aut(L/K) for the automorphisms of L
fixing K.

Problem 19.1. Let K ⊆ L be fields. Let f(x) be a polynomial in K[x]; let {θ1, θ2, . . . , θr} be the roots of
f in L.

(1) Show that Aut(L/K) maps {θ1, θ2, . . . , θr} to itself.
(2) Show that stabilizer of θj in Aut(L/K) is Aut(L/K(θj)).
(3) Let L = Q( 4

√
2) and let f(x) = x2 − 2. Show that the roots of f(x) in L are {±

√
2} and show that

Aut(L/Q) fixes both of them.

Problem 19.2. . Let K be a field, let f be a polynomial in K[x], let L be a splitting field for f and let
{θ1, θ2, . . . , θn} be the roots of f in L. Assume {θ1, θ2, . . . , θn} are distinct.1

(1) Show that the action of Aut(L/K) takes {θ1, θ2, . . . , θn} to itself.
(2) Show that this action of Aut(L/K) gives an injection Aut(L/K) ↪→ Sn.

Problem 19.3. Let K, f , L and {θ1, θ2, . . . , θn} be as in Problem 19.2. Let g(x) be an irreducible fac-
tor of f(x) in K[x] and renumber the θ’s so that {θ1, θ2, . . . , θm} are the roots of g in L. Show that
{θ1, θ2, . . . , θm} is the Aut(L/K)-orbit of θ1 in L. Hint: Apply Problem 18.6 to the diagram

K[θi]

��

K[x]/g(x)K[x]
∼=oo

∼= // K[θj ]

��
L // L

Problem 19.4. Let L be the splitting field of x3 − 2 over Q. Show that Aut(L/Q) ∼= S3.

Problem 19.5. Let L = Q(cos 2π
7 ). Show that Aut(L/Q) ∼= C3.

1This happens if and only if GCD(f(x), f ′(x)) = 1, see the homework.



20. GALOIS EXTENSIONS

Problem 20.1. Let K ⊆ L be a field extension of finite degree. Let θ ∈ L and let g(x) be the minimal
polynomial of θ over K.

(1) Show that the size of the Aut(L/K) orbit of θ is ≤ [K[θ] : K].
(2) If we have equality, show that g is separable and splits in L.
(3) If L is the splitting field of some separable polynomial f(x), and g(x) is an irreducible factor of

f(x), show that we have equality.

The last part of Problem 20.1 is phrased in an awkward way; a better statement, which you can prove once
you’ve proved the main results of this worksheet, is “if L is Galois, then we have equality.”

Problem 20.2. Let K ⊆ L be a field extension of finite degree. Show that # Aut(L/K) ≤ [L : K].

It is natural to ask when we have equality in Problem 20.2. This is answered by the following:

Theorem/Definition: Let L/K be a field extension of finite degree. The following are equivalent:
(1) For every θ ∈ L, the minimal polynomial of θ over K is separable and splits in L.
(2) L is the splitting field of a separable polynomial f(x) ∈ K[x].
(3) We have # Aut(L/K) = [L : K].
(4) The fixed field of Aut(L/K) is K.

A field extension L/K which satisfies these equivalent definitions is called Galois.

Problem 20.3. Prove the implications (1) =⇒ (2) =⇒ (3) =⇒ (4) of this theorem.

The last statement is a bit harder, here is one route:

Problem 20.4. Assume condition (4). Let θ ∈ L and let {θ1, θ2, . . . , θr} be the orbit of θ under Aut(L/K).
Let g(x) =

∏
j(x− θj).

(1) Show that g(x) has coefficients in K.
(2) Show that g(x) is the minimal polynomial of θ over K.
(3) Deduce condition (1).

Definition: When L/K is Galois, we denote Aut(L/K) by Gal(L/K).

We note that we have just proved the following:

Theorem:Let L/K be a Galois extension. Let θ ∈ L. Then the minimal polynomial of θ over K is∏
φ∈Gal(L/K)θ(x− φ).



21. TOWERS OF FIELD EXTENSIONS AND GALOIS GROUPS

We recall from last time:
Theorem/Definition: Let L/F be a field extension of finite degree. The following are equivalent:

(1) For every θ ∈ L, the minimal polynomial of θ over F is separable and splits in L.
(2) L is the splitting field of a separable polynomial f(x) ∈ F [x].
(3) We have # Aut(L/F ) = [L : F ].
(4) The fixed field of Aut(L/F ) is F .

A field extension L/F which satisfies these equivalent definitions is called Galois.

Theorem:Let L/F be a Galois extension. Let θ ∈ L. Then the minimal polynomial of θ over F is∏
φ∈Gal(L/F )θ(x− φ).

Throughout this worksheet, let F ⊆ K ⊆ L be field extensions of finite degree, with L/F Galois.

Problem 21.1. Show that L/K is Galois.

Problem 21.2. Show that Gal(L/K) is a subgroup of Gal(L/F ).

Problem 21.3. Show that # Gal(L/K) = [L : K] and [Gal(L/F ) : Gal(L/K)] = [K : F ].

Problem 21.4. Show that the fixed field of Gal(L/K) is K.

Problem 21.5. Let L/F be a Galois extension. Show that the map

{fields K with F ⊆ K ⊆ L} −→ {subgroups of Gal(L/F )}
given by K 7→ Gal(L/K) is injective. (In fact, it is bijective, but I don’t think we have the toolkit to prove
that yet.)

Problem 21.6. Let σ ∈ Gal(L/F ). Show that Gal(L/σ(K)) = σGal(L/K)σ−1 (as subgroups of
Gal(L/F )).

Problem 21.7. Show that the following are equivalent:

(1) The subgroup Gal(L/K) is normal in Gal(L/F ).
(2) For all σ ∈ Gal(L/F ), we have σ(K) = K.
(3) For all θ ∈ K, the minimal polynomial of θ over F splits in K.
(4) K is the splitting field of a separable polynomial with coefficients in F .
(5) K/F is Galois.

Problem 21.8. In the situation above, show that we have a short exact sequence 1 → Gal(L/K) →
Gal(L/F )→ Gal(K/F )→ 1.



22. ARTIN’S LEMMA

The following problem was on the problem sets, check that everyone knows how to solve it:

Problem 22.1. Let L be a field, let H be a group of automorphisms of L and let F = Fix(H), the elements
of L fixed by H . Suppose that V is an L-vector subspace of Ln and that H takes V to itself. Show that V
contains a nonzero element of Fn.

One of several results called Artin’s Lemma: Let L be a field, let H be a finite group of automorphisms
of L and let F = Fix(H), the elements of L fixed by H . Then [L : F ] = #(H) and H = Aut(L/F ).

Throughout this worksheet, let L, H and F be as above.

Problem 22.2. Show that #(H) ≤ [L : F ]. This is just quoting something you’ve already done.

Suppose for the sake of contradiction that there are n > #(H) elements α1, α2, . . . , αn ∈ L which are
linearly independent over F . Define

V =
{

(c1, c2, . . . , cn) ∈ Ln :
∑

j
cjh(αj) = 0 ∀h ∈ H

}
.

Problem 22.3. Show that V is an L-vector subspace of Ln and that H takes V to itself.

Problem 22.4. Show that dimL V > 0.

Problem 22.5. Deduce a contradiction, and explain why you have proved [L : F ] = #(H).

Problem 22.6. Show that H = Aut(L/F ).

Artin’s Lemma gives us a wide source of Galois extensions:

Problem 22.7. Let L, H and F be as in Artin’s Lemma. Show that [L : F ] is Galois.



23. KUMMER’S THEOREM AND GALOIS’S CRITERION FOR RADICAL EXTENSIONS

We showed that, if we adjoin elements to a field by takingm-th roots, we will never leave the solvable fields.
On this worksheet, we will prove a converse.

Here is the set up for problems 23.1 through 23.4: LetK be a field where n 6= 0 and let ζ ∈ K be a primitive
n-th root of unity. Let L/K be a Galois extension with Gal(L/K) ∼= Cn and let g generate Gal(L/K).

Problem 23.1. Show that, as aK-vector space,L splits up as
⊕n−1

j=0 Lj whereLj := {x ∈ L : g(x) = ζjx}.
Problem 23.2. With notation as in the previous problems, let α ∈ Lj and β ∈ Lk. Show that αβ ∈ Lj+k.

Problem 23.3. Suppose for the sake of contradiction that, for some j, we have dimLj ≥ 2.
(1) Show that L0 ) K.
(2) Deduce a contradiction, and conclude that dimLj = 1 for all j ∈ Z/nZ.

Problem 23.4. Let α ∈ L1 and put θ = αn. Show that L = K(α) ∼= K[x]/(xn − θ)K[x].

Theorem (Kummer’s Theorem): Let K be a field where n 6= 0 and suppose that K contains a
primitive n-th root of unity. Let L/K be a Galois extension whose Galois group is cyclic of order n.
Then L = K(θ1/n) for some θ ∈ K.

Problem 23.5. Let L/F be a Galois extension with solvable Galois group of order N . Suppose that N 6= 0
in F and xN − 1 splits in F . Show that there is a chain of subfields F = K0 ⊂ K1 ⊂ · · · ⊂ Kr = L where
Kj+1 = Kj(θ

1/dj
j ) for some θj ∈ Kj and some dj dividing N .

Problem 23.6. Let L/F be a Galois extension with solvable Galois group of order N . Suppose that N 6= 0
in F . Show that there is a chain of subfields F ⊆ K0 ⊂ K1 ⊂ · · · ⊂ Kr ⊇ L where K0 = F (ζN ) and
Kj+1 = Kj(θ

1/dj
j ) for some θj ∈ Kj and some dj dividing N . (See diagram below.) You have proved:

Kr = Kr−1(θ
1/dr−1

r−1 )

d = [let@tokeneifnch
...

K1 = K0(θ
1/d0
0 )

L K0 = F (ζN )

F

Theorem (Galois’s characterization of equations solvable by radicals): Let θ be algebraic over Q
and let L be the Galois closure of Q(θ). There is a formula for θ using +, −, ×, ÷, d

√ if and only if
Gal(L/Q) is solvable.

Finally, we apply this to study constructible numbers again:

Problem 23.7. Let F be a field of characteristic 6= 2. Let L/F be a Galois extension with Galois group of
order 2r. Show that there is a chain of fields F = K0 ⊂ K1 ⊂ · · · ⊂ Kr = L such that Ki+1 = Ki(

√
θi)

for θi ∈ Ki. You have proved:

Theorem: Let θ be algebraic over Q and let L be the Galois closure of Q(θ). There is a formula for θ
using +, −, ×, ÷,√ if and only if Gal(L/Q) is a 2-group.



A. LEFT AND RIGHT SPLITTINGS

Here is some useful vocabulary: Let X and Y be sets and let X λ−→ Y and Y
ρ−→ X be maps obeying

λ ◦ ρ = Id.

Definition: In the above context, λ is called a left inverse of ρ and ρ is called a right inverse of λ. We
also say that λ is a retraction of ρ and ρ is a section of λ.

Problem A.1. If λ and ρ are as above, show that λ is injective and ρ is surjective.

We now turn back to groups.

Definition: Let 1 → A
α−→ B

β−→ C → 1 be a short exact sequence. A left splitting of this
sequence is a group homomorphism λ : B → A which is left inverse to α. A right splitting is a group
homomorphism ρ : C → B which is right inverse to β. A sequence is called “left split” or “right split”
if it has the corresponding sort of splitting.

We’ll think about left splittings first.

Remark: If I type “left splitting” into Google, the first suggestion is “left splitting headache”.

Problem A.2. Let 1 → A
α−→ B

β−→ C → 1 be a short exact sequence and let λ : B → A be a left
splitting. Show that (λ, β) : B → A× C is an isomorphism.

Problem A.3. Show that every left split short exact sequence is also right split.

Now we think about right splittings.

Problem A.4. Let A be a group and let C be a group acting on A. Construct a right split short exact
sequence 1→ A→ Aoφ C → C → 1.

Problem A.5. Let 1 → A
α−→ B

β−→ C → 1 be a short exact sequence and let ρ : C → B be a right
splitting.

(1) Show that c∗a := ρ(c)aρ(c)−1 is an action of the groupC on the groupA by group automorphisms.

(2) Show that B ∼= AoC, where the action of C on A is as in the previous part. Hint: See Problem ??.

Thus, right split sequences occur when the middle group is the semidirect product of the ends.

Problem A.6. Let 0→ A
α−→ B

β−→ C → 0 be a right split short exact sequence of abelian groups. Show
that B ∼= A× C and the sequence is left split.

Thus, in the abelian setting, left and right splittings are equivalent.



B. CENTER, CENTRAL SERIES AND NILPOTENT GROUPS

A particularly nice sort of subnormal series is a central series, and a particularly nice kind of solvable group
is a nilpotent group.

Definition: The center of a group G is the set Z(G) := {h : gh = hg ∀g ∈ G}.

Problem B.1. Let G be a group.

(1) Check that Z(G) is a normal subgroup of G.
(2) Check that every subgroup of Z(G) is normal in G.

Problem B.2. Let k be a field and let U be the group of matrices with entries in k of the form
[

1 ∗ ∗
0 1 ∗
0 0 1

]
. Show

that the center of U is the group of matrices of the form
[

1 0 ∗
0 1 0
0 0 1

]
.

This problem was on the problem sets; check that everyone in your group remembers how to do it.

Problem B.3. Let p be a prime and let G be a group of order pk for k ≥ 1. Show that Z(G) is nontrivial.

Definition: Let G be a group. A central series of G is a sequence of subgroups G0 /G1 /G2 / · · ·/GN
such that, if g ∈ G and h ∈ Gi then ghg−1h−1 ∈ Gi−1, for 1 ≤ i ≤ N . G is called nilpotent if it has a
central series G0 / G1 / G2 / · · · / GN with G0 = {e} and GN = G.

Problem B.4. Let G0 /G1 /G2 / · · · /GN be a series of subgroups of G. Show that G is a central series if
and only if all the Gi are normal in G, and Gi/Gi−1 ⊆ Z(G/Gi−1) for 1 ≤ i ≤ N .

Problem B.5. Let k be a field and let U be the group of matrices with entries in k of the form
1 ∗ ∗ · · · ∗

1 ∗ · · · ∗
1 · · · ∗

. . .
1

 .
Show that U is nilpotent.

Problem B.6. Let p be a prime and let G be a group of order pk for some k ≥ 1. Show that G is nilpotent.

There is a converse to Problem B.6 which I hope to prove: The finite nilpotent groups are precisely the direct
products of p-groups.

Problem B.7. Show that a nilpotent group is solvable.

Problem B.8. Show that a subgroup of a nilpotent group is nilpotent.

Problem B.9. Show that a quotient of a nilpotent group is nilpotent.



C. FINITE NILPOTENT GROUPS ARE PRODUCTS OF p-GROUPS.

Today’s goal is to show:

Theorem: Let G be a finite group. Then G is nilpotent if and only if it is a direct product of p-groups.

Problem C.1. Show the easy direction: A direct product of p-groups is nilpotent.

From now on, let G be a finite nilpotent group with #(G) =
∏
pkii . We will be proving, by induction on

#(G), that G is the direct product of its Sylow subgroups.

Problem C.2. Show that G has a central subgroup Z which is cyclic of prime order.

Let G′ = G/Z, so we have a short exact sequence 1 → Z → G
β−→ G′ → 1. Let P ′i be a pi-Sylow of G′.

By induction, G′ =
∏
i P
′
i . We number the prime factors of #(G) such that #(Z) = p1. We analyze the

Sylows of G, starting with the p1-Sylow, and then the others.

Problem C.3. (1) Show that β−1(P ′1) is normal in G.
(2) Show that β−1(P ′1) is a pn-Sylow of G.

Problem C.4. Now, let i > 1. We have a short exact sequence 1→ Z → β−1(P ′i )→ P ′i → 1.

(1) Show that β−1(P ′i ) is normal in G.
(2) Show that the pi-Sylow of β−1(P ′i ) is also a pi-Sylow of G.
(3) Show that β−1(P ′i )

∼= Z × P ′i (here is where you use Schur-Zassenhaus).
(4) Show that the pi-Sylow of β−1(P ′i ) is a characteristic subgroup of β−1(P ′i ).
(5) Show that the pi-Sylow of G is normal in G.

We have now shown that every Sylow subgroup of G is normal in G.

Problem C.5. Conclude by proving that G is the direct product of its Sylow subgroups.



D. SCHUR-ZASSENHAUS, THE ABELIAN CASE

The aim of the next two worksheets will be to prove:

Theorem Schur-Zassenhaus: Let 1 → A → B → C → 1 be a short exact sequence of finite groups
where GCD(#(A),#(C)) = 1. Then this sequence is right split, so B ∼= Ao C.

This is the start of an answer to the question “how are groups assembled out of smaller groups”: When you
put groups of relatively prime order together, you just get semidirect products.

Today, we’ll be proving the case where A is abelian.1 Here is our main result:

Theorem:Let A be an abelian group, C a finite group of size n, and suppose that a 7→ an is a bijection
from A to A. Let 1→ A→ B → C → 1 be a short exact sequence. Then this sequence is right split.

Problem D.1. Show that, if A is a finite abelian group and n an integer such that GCD(#(A), n) = 1, then
a 7→ an is a bijection. Thus, the above Theorem does imply the Schur-Zassenhaus theorem for A abelian.

From now on, let A be an abelian group, let C be a finite group and let 1 → A → B
β−→ C → 1 be a

short exact sequence. We abbreviate #(C) to n; we will not introduce the hypothesis on a 7→ an until
later. We’ll identify A with its image in B.
Let S be the set of right inverses of β, meaning maps σ : C → B such that β(σ(c)) = c. We emphasize that
σ is not required to be compatible with the group multiplication in any way. Let B act on S by (bσ)(c) =
bσ(β(b)−1c).

Problem D.2. Check that this is an action.

Let σ1 and σ2 ∈ S. Set
d(σ1, σ2) =

∏
c∈C

(
σ1(c)σ2(c)−1

)
. (∗)

We don’t have to specify the order of the product, because every term is in A.

Problem D.3. Show that d(σ1, σ2)d(σ2, σ3) = d(σ1, σ3) and d(σ1, σ2) = d(σ2, σ1)−1.

Problem D.4. For the action of B on S described above, check that d(bσ1, bσ2) = bd(σ1, σ2)b−1.

Define σ1 ≡ σ2 if d(σ1, σ2) = 1.

Problem D.5. Check that ≡ is an equivalence relation.

Define X to be the set of equivalence classes of S module the relation ≡.

Problem D.6. Check that the action of B on S descends to an action of B on X.

Now, we impose the condition that a 7→ an is an automorphism of A.

Problem D.7. Show that the subgroup A of B acts on X with a single orbit and trivial stabilizers.

The following problem was on the problem sets; check that everyone knows how to do it:

Problem D.8. You have now shown that B acts on X, and that the restriction of this action to A has a single
orbit and trivial stabilizers. Explain why this means that 1→ A→ B → C → 1 is right split.

1This approach is closely based on that of Kurzweil and Stellmacher, The Theory of Finite Groups, Chapter 3.3, Springer-Verlag
(2004).



E. THE SCHUR-ZASSENHAUS THEOREM, GENERAL CASE

Today’s goal is to prove:

Theorem (Schur-Zassenhaus): Let A and C be finite groups with GCD(#(A),#(C)) = 1. Then any
short exact sequence 1→ A→ B → C → 1 is right split.

We introduce the following (not standard) terminology: We’ll say that a pair of groups (A,C) is straight-
forward if every short exact sequence 1→ A→ B → C → 1 is right split. The abelian Schur-Zassenhaus
theorem shows that if A is abelian and GCD(#(A),#(C)) = 1, then (A,C) is straightforward.

Problem E.1. Suppose that (A1, C) and (A2, C) are straightforward and there is a short exact sequence
1 → A1 → A → A2 → 1 with A1 canonical in A. Show that (A,C) is straightforward. Hint/Warning:
Unfortunately, I think this first problem is one of the hardest. First use that (A2, C) is straightforward, then
use that splitting to build a new sequence which we can split using that (A1, C) is straightforward.

Problem E.2. Let C be a finite group, let p be a prime not dividing #(C) and let P be a p-group. Show
that (P,C) is straightforward.

Let p be a prime dividing #(A) and let P be a p-Sylow subgroup of A. Let 1 → A → B → C → 1 be a
short exact sequence, with GCD(#(A),#(C)) = 1. Assume inductively that we have shown (A′, C) is
straightforward whenever GCD(#(A′),#(C)) = 1 for #(A′) < #(A).
Recall that NA(P ) = {a ∈ A : aPa−1 = P} and likewise for NB(P ).

Problem E.3. Show that P is canonical in NA(P ).

Problem E.4. Suppose that A = NA(P ). Prove that 1→ A→ B → C → 1 is right split.

So we may now assume that NA(P ) 6= A.

Problem E.5. With A, B, C, P as above, show that 1→ NA(P )→ NB(P )→ C → 1 is exact.

Problem E.6. Show that 1→ A→ B → C → 1 is right split.



F. SOLVABLE EXTENSIONS AND UNSOLVABILITY OF THE QUINTIC

Throughout this worksheet, let F be a field of characteristic zero.

Problem F.1. Let K be the splitting field of xn − 1 over F . Show that Gal(K/F ) is abelian.

Problem F.2. Let c ∈ F and let K be the splitting field of xn− c over F . Show that Gal(K/F ) is solvable.

A field extension K/F is called solvable if there is a Galois extension L/F with K ⊆ L and Gal(L/F )
solvable.

Problem F.3. Let K/F be a solvable extension. Let K ′ be an extension of K which is of the form K[θ]
where θm ∈ K for some θ ∈ K ′. Show that K ′/F is solvable.

Problem F.4. Let F be a field and let K1/F , K2/F , . . . , Kr/F be solvable extensions of F . Show that
there is a solvable extension M of F into which all the Kj embed. (Hint: See Problem ??.)

Problem F.5. (The unsolvability of the quintic) Let f(x) be a degree 5 separable polynomial in F [x] and
let L be the splitting field of f over F . Suppose that Gal(L/F ) is A5 or S5. Show that L is not contained in
any solvable extension of F .

The point of the next problem is to drive home that we have completed the story of the quintic.

Problem F.6. Let f(x) be a degree 5 separable polynomial in Q[x] and let L be the splitting field of f over
Q. Suppose that Gal(L/Q) is A5 or S5. Show that the roots of f cannot be expressed in terms of rational
numbers using +, −, ×, ÷ and m

√ .



G. THE GALOIS CORRESPONDENCE

Recall:
Theorem/Definition Let L/K be a field extension of finite degree. The following are equivalent:

(1) We have # Aut(L/K) = [L : K].
(2) The fixed field of Aut(L/K) is K.
(3) For every θ ∈ L, the minimal polynomial of θ over K is separable and splits in L.
(4) L is the splitting field of a separable polynomial f(x) ∈ K[x].

A field extension L/K which satisfies these equivalent definitions is called Galois.

Given a subfield F with K ⊆ F ⊆ L, we write Stab(F ) for the subgroup of G fixing F ; given a subgroup
H of Gal(L/K), we write Fix(H) for the subfield of L fixed by H . Our next main goal will be to show:

The fundamental Theorem of Galois theory Let L/K be a Galois extension with Galois group G. The
maps Stab and Fix are inverse bijections between the set of subgroups ofG and the set of intermediate fields
F with K ⊆ F ⊆ L. Moreover, if F1 ⊆ F2, then Stab(F1) ⊇ Stab(F2) and [Stab(F1) : Stab(F2)] =
[F2 : F1]. If H1 ⊆ H2 then Fix(H1) ⊇ Fix(H2) and [Fix(H1) : Fix(H2)] = [H2 : H1].

We start by proving some basic results about Fix and Stab.

Problem G.1. (1) Show that, if F1 ⊆ F2 then Stab(F1) ⊇ Stab(F2).
(2) Show that, if H1 ⊆ H2 then Fix(H1) ⊇ Fix(H2).

Problem G.2. (1) Show that Stab(Fix(H)) ⊇ H .
(2) Show that Fix(Stab(F )) ⊇ F .

The Fundamental Theorem tells us that both of the ⊇’s in Problem G.2 are actually equality, but we don’t
know that yet.

We now give examples. Here is a table of the subgroups of S3:

S3

A3 〈(12)〉 〈(13)〉 〈(23)〉

{e}

Problem G.3. Let L = Q(x1, x2, x3), let S3 act on L by permuting the variables and let K = Fix(S3).
Describe the subfield of L fixed by each of the subgroups of S3.

Problem G.4. Let L be the splitting field of x3−2 over Q. We number the roots of x3−2 as 3
√

2, ω 3
√

2 and
ω2 3
√

2, where ω is a primitive cube root of 1. Described the subfield of L fixed by each of the subgroups of
S3.

Now we prove the theorem!

Problem G.5. Both parts of this problem are things you already did, your job is just to remember
when you did them.

(1) Let L/K be a Galois extension. Let F be a field withK ⊆ F ⊆ L. Show that |Stab(F )| = [L : F ].
(2) Let L/K be a Galois extension. LetH be a subgroup of Gal(L/F ). Show that [L : Fix(H)] = |H|.

Problem G.6. Prove that the maps Fix and Stab in the Fundamental Theorem are mutually inverse.

Problem G.7. Check the remaining claims of the Fundamental Theorem.


